
Configuration branches with Git

Burkart Lingner

November 3, 2011

Introduction

Every day that I use Git in my projects I wonder how I ever managed to
do without it. Easy branching is arguably one of Git’s best features – and I
discovered a new way to utilize it.

It’s common to use ‘topic branches’ to try out new features you’re in the
process of developing before you deem them worthy enough to be included in
the master branch. That way it’s easy to work on different parts of a project
in parallel, with Git doing the work when it comes time to merge all those
different branches back together.

My use case is somewhat different. I precisely don’t want to have several
code bases but rather the same code used with different settings. While the
master branch with its set of default settings is used to develop the code itself,
there are also a number of configuration branches that use the same code with
their respective settings. This allows me to use the same software with an
arbitrary number of different configurations to e.g. work on different data sets
or have the same data processed in different ways by varying some parameters.

The key implementation problem, I figured, would be to maintain the
once-changed settings in a certain configuration branch with as little human
intervention as possible while also keeping up to date with the code changes
from the master branch. However, thanks to Git’s abilities it’s really easy to
achieve that goal. This article shows the general approach to do so and also
covers a few of the problems that might occur along the way. Needless to say
that even those cases are easily handled with just an additional command or
two.

A simple example

Let’s first set up a Git repository in the newly created directory gitcfgbrn.

$ mkdir gitcfgbrn

$ cd gitcfgbrn

$ git init

Initialized empty Git repository in /home/username/gitcfgbrn/.git/

The example project consists of the simple shell script program.sh and
another file settings.conf that contains the configuration for the script. The
script sources the settings.conf file to load the configuration, displays a welcome
message, the names of all files in the current directory, and a goodbye message.

$ cat <<EOF > program.sh

> #!/bin/bash

> . ./settings.conf

> echo \$welcome

> ls \$files

> echo \$goodbye

> EOF

$ cat <<EOF > settings.conf

> welcome="Welcome user!"

> goodbye="That’s it. Goodbye"

> files="*"

> EOF

$ chmod a+x program.sh

$./program.sh
Welcome user!

program.sh settings.conf

That’s it. Goodbye

After the script has been executed to test its functionality, we’ll commit
both files to the repository.

$ git add .

$ git commit -am "Initial commit"

[master (root-commit) ce02b9e] Initial commit

2 files changed, 8 insertions(+), 0 deletions(-)

create mode 100755 program.sh

create mode 100644 settings.conf

2

Now the configuration branch comes into play. Its configuration deviates
from the standard one in the master branch by a personalized welcome message.
To do so we first create the branch myconfig and then change the welcome
parameter in settings.conf. After verifying the new functionality by running
program.sh, we finally commit the change.

$ git checkout -b myconfig

Switched to a new branch 'myconfig'

$ sed -i 's/Welcome user/Welcome Burkart/' settings.conf

$ grep ^welcome= settings.conf

welcome="Welcome Burkart!"

$./program.sh
Welcome Burkart!

program.sh settings.conf

That’s it. Goodbye

$ git commit -am "Personalize welcome message"

[myconfig 5c10251] Personalize welcome message

1 files changed, 1 insertions(+), 1 deletions(-)

Thereafter the commit graph looks as follows:

C1 ce02b9e

C2 5c10251

master

myconfig

So far so good. Now let’s go back to the master branch to verify that it still
contains the old welcome message.

$ git checkout master

Switched to branch 'master'

$ grep ^welcome= settings.conf

welcome="Welcome user!"

And just as expected it does.

3

Keep up with changes in the master branch

The next step will be to change something in the master branch and make
sure that change is also applied to the configuration branch myconfig. We
could change something in program.sh but it’s also perfectly reasonable to make
changes in settings.conf while on the master branch – those changes then reflect
a different default behavior of the program. What we’ll do is make sure that
program.sh only prints the names of shell scripts from now on. Once the change
is tested it can be committed.

$ sed -i 's|*|*.sh|' settings.conf

$ grep ^files= settings.conf

files="*.sh"

$./program.sh
Welcome user!

program.sh

That’s it. Goodbye

$ git commit -am "List only shell scripts"

[master 22df889] List only shell scripts

1 files changed, 1 insertions(+), 1 deletions(-)

The new commit C3 is a child of the initial commit C1. The commit graph
shows that the branches master and myconfig have diverted.

C1 C3 22df889

C2

master

myconfig

4

An important aspect of the methodology presented here is to easily en-
compass changes made in the master branch into the configuration branch.
Now that the master branch has advanced from where myconfig branched off,
such an operation is required. Git provides us with the rebase command to do
just what we want to do, i.e. apply the configuration changes in commit C2

to C3 instead of to C1 as before. As you can see, Git is smart enough to mix
the changes to settings.conf from both C2 and C3: the personalized welcome
message and the shell-script files wildcard, respectively.

$ git checkout myconfig

Switched to branch 'myconfig'

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: Personalize welcome message

Using index info to reconstruct a base tree...

Falling back to patching base and 3-way merge...

Auto-merging settings.conf

$ cat settings.conf

welcome="Welcome Burkart!"

goodbye="That’s it. Goodbye"

files="*.sh"

As you can see in the commit graph, the old commit C2 has been removed
and replaced with C2’ which contains the same change to the welcome message
but has C3 as its parent.

C1

C2

C3

C2’

master

myconfig

5

Merge conflict upon rebasing

So far everything has been pretty straightforward. Things get more complicated
if the master branch modifies those parts of the configuration that are changed
in myconfig as well.

To create such a situation let’s go back to the master branch and make the
welcome message more informative.

$ git checkout master

Switched to branch 'master'

$ sed -i 's/Welcome user!/Welcome user! These are the files you'\'\

> 're looking for:/' settings.conf

$ grep ^welcome= settings.conf

welcome="Welcome user! These are the files you're looking for:"

$ git commit -am "Clarify welcome message"

[master 87ba98d] Clarify welcome message

1 files changed, 1 insertions(+), 1 deletions(-)

Once more this makes the master branch advance from a common ancestor
with the myconfig branch, as shown in the commit graph.

C1 C3

C2’

C4 87ba98d

master

myconfig

6

We do the usual to encompass the changes from master into myconfig:
checkout myconfig and rebase. But wait. . . Rebasing fails due to a merge
conflict this time. As both branches edited the same line in settings.conf (the
welcome string), Git can’t automatically determine what to do. Just like with
any other merge conflict, Git puts special markers in the file and asks the user
to manually resolve the conflict.

$ git checkout myconfig

Switched to branch 'myconfig'

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: Personalize welcome message

Using index info to reconstruct a base tree...

Falling back to patching base and 3-way merge...

Auto-merging settings.conf

CONFLICT (content): Merge conflict in settings.conf

Failed to merge in the changes.

Patch failed at 0001 Personalize welcome message

When you have resolved this problem run "git rebase --continue".

If you would prefer to skip this patch, instead run "git rebase --skip".

To restore the original branch and stop rebasing run "git rebase --abort".

$ cat settings.conf

<<<<<<< HEAD

welcome="Welcome user! These are the files you're looking for:"

=======

welcome="Welcome Burkart!"

>>>>>>> Personalize welcome message

goodbye="That's it. Goodbye"

files="*.sh"

7

The conflict resolution is most easily done using git mergetool.

$ git mergetool

merge tool candidates: meld opendiff kdiff3 tkdiff xxdiff tortoisemerge ⤦

Ç gvimdiff diffuse ecmerge p4merge araxis emerge vimdiff

Merging the files: settings.conf

Normal merge conflict for 'settings.conf':

{local}: modified

{remote}: modified

Hit return to start merge resolution tool (meld):

$ grep ^welcome= settings.conf

welcome="Welcome Burkart! These are the files you're looking for:"

In my case meld was used as the merge tool. It created a backup copy of
settings.conf named settings.conf.orig which can be deleted.

$ rm settings.conf.orig

$ git rebase --continue

Applying: Personalize welcome message

Once Git continues the rebase operation, the result is analogous to the
rebase cycle without a merge conflict, yielding the following commit graph:

C1 C3

C2’

C4

C2’’

master

myconfig

8

Migrating a commit from config branch to master

Let’s now make another edit on the file program.sh.

$ sed -i 's/^\./source/' program.sh

$ cat program.sh

#!/bin/bash

source ./settings.conf

echo $welcome

ls $files

echo $goodbye

$ git commit -am "Use source command instead of (dot) for clarity"

[myconfig b8589a8] Use source command instead of (dot) for clarity

1 files changed, 1 insertions(+), 1 deletions(-)

But oops, we’re still on the myconfig branch, aren’t we? Let’s make sure.

$ git branch

master

* myconfig

As the asterisk in front of myconfig indicates we are in fact still on that
branch. That means the last commit went to the myconfig branch, making the
commit tree look like this:

C1 C3 C4

C2’’ C5 b8589a8

master

myconfig

Unfortunately this is in violation with the methodology of having code
modifications in the master branch whereas the myconfig branch is reserved for
a modified configuration. Nevertheless the most recent commit C5 is valuable,
it’s just in the wrong place. Thankfully Git offers a way to copy (not move)
commits to another branch in the form of the command git cherry-pick.

9

$ git checkout master

Switched to branch 'master'

$ git cherry-pick b8589a8

Finished one cherry-pick.

[master 2b17227] Use source command instead of (dot) for clarity

1 files changed, 1 insertions(+), 1 deletions(-)

After this operation the master branch contains the additional commit C5’

with the same changes to program.sh as C5 but with a different sha1 hash.

C1 C3 C4

C2’’ C5 b8589a8

C5’ 2b17227

master

myconfig

To remove this duplicate commit (actually the original C5 in the myconfig

branch) we rebase myconfig onto master once more.

$ git checkout myconfig

Switched to branch 'myconfig'

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: Personalize welcome message

Now everything is as it is supposed to be again, with the code modification
history in the master branch and configuration changes in the myconfig branch.

C1 C3 C4

C2’’ C5

C5’

C2’’’

master

myconfig

10

Summary

The workflow presented in this article harnesses the branching power of Git to
easily switch between differently configured variants of the same code. The
key to this approach is to strictly differentiate between general (programming)
work in i.e. the master branch and configuration-only modifications in the
configuration branch. This allows you to easily use the most up-to-date code
base in the configuration branch after just one simple rebasing operation.

checkout

master

run program

edit

commit

checkout

myconfig
rebase master

run program

edit config

commit

I like to think of working on the two branches as two circles connected at
one point, just like in the figure above. You start out in the center by deciding
what you intend to do. Either you take the blue route to run the program with
default settings and work on the code itself, or you take the yellow route to run
the program with non-standard settings, possibly editing that configuration as
you go.

Each of the two routes begins by checking out the appropriate branch and
ends by committing whatever changes you may have made before going back
to the junction from the beginning where you decide which configuration
you’d like to work on next. What differentiates the two routes is whether
you’re going to edit the code (blue) or just the configuration (yellow). In the
latter case it’s recommended to first rebase the configuration branch to keep
up with any code changes that happened since the last rebase operation.

11

